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The most frequent causes of death and disability in the Western world are atherosclerotic coronary artery disease
(CAD) and acute myocardial infarction (MI). This common disease is thought to have a polygenic basis with a complex
interaction with environmental factors. Here, we report results of a genomewide search for susceptibility genes for
MI in a well-characterized U.S. cohort consisting of 1,613 individuals in 428 multiplex families with familial premature
CAD and MI: 712 with MI, 974 with CAD, and average age of onset of 44.4�9.7 years. Genotyping was performed
at the National Heart, Lung, and Blood Institute Mammalian Genotyping Facility through use of 408 markers that
span the entire human genome every 10 cM. Linkage analysis was performed with the modified Haseman-Elston
regression model through use of the SIBPAL program. Three genomewide scans were conducted: single-point, mul-
tipoint, and multipoint performed on of white pedigrees only (92% of the cohort). One novel significant susceptibility
locus was detected for MI on chromosomal region 1p34-36, with a multipoint allele-sharing P value of !10512

( ). Validation by use of a permutation test yielded a pointwise empirical P value of .00011 at this locus,LOD p 11.68
which corresponds to a genomewide significance of . For the less restrictive phenotype of CAD, no geneticP ! .05
locus was detected, suggesting that CAD and MI may not share all susceptibility genes. The present study thus identifies
a novel genetic-susceptibility locus for MI and provides a framework for the ultimate cloning of a gene for the complex
disease MI.

Introduction

Atherosclerotic coronary artery disease (CAD) and its
most important complication, acute myocardial infarc-
tion (MI), are the principal causes of death and disability
in the United States and other Western countries (Ameri-
can Heart Association 2002). Recent work has illumi-
nated the pathophysiology that atherosclerotic involve-
ment of the coronary artery, with attendant inflam-
mation of the arterial wall, can ultimately lead, in some
patients, to plaque erosion, fissure, or rupture and in-
duction of thrombosis, the clinical syndrome of acute
MI (Lusis 2000; Lewis et al. 2002). Multiple risk factors
for this disease have been identified (Lewis et al. 2002;
Willett 2002)—including hypertension, hypercholestero-
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lemia, obesity, smoking, and diabetes—but the epide-
miologic factor that has attracted considerable attention
is family history (Nora et al. 1980). Indeed, the relative
risk of death from coronary disease for MZ twins was
8.1, compared with 3.8 for DZ twins (Slack and Evans
1966; Marenberg et al. 1994). A genetic-epidemiologic
study with a Colorado population of 207 white patients
who were affected with MI aged !55 years has suggested
that the polygenic heritability of liability for early onset
MI is 0.56–0.63 (Nora et al. 1980). For premature MI,
on the binary scale, the estimated sample heritability in
our ascertained population is 0.31 (data not shown).

Two major approaches have thus far been utilized to
identify the susceptibility genes associated with CAD and
MI. Current genetic studies of complex CAD and MI are
largely focused on population-based case-control studies
of candidate genes. Many gene variants have been inves-
tigated for their effects on CAD and MI risks. Polymor-
phisms in genes encoding ApoE, Lp(a) or Apo(a), ApoAI,
ApoCIII, ApoIV, t-PA, fibrinogen, PAI-1 (plasminogen
activator inhibitor), vWF (von Willebrand factor), plate-
let glycoprotein IIIa, lipoprotein lipase, cholesterol ester
hydrolase, CETP (cholesterol ester transfer protein), FV
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Table 1

Clinical and Demographic Features of the Study
Population

Feature Finding

Age at onset (mean � SD) 44.4 � 9.7 years
Age at exam (mean � SD) 54.4 � 11.3 years
No. male/no. female 1,152/878
Ethnicity:

African American 2.3%
Asian or Pacific Islander .8%
White 91.7%
Hispanic 1.4%
Native American or Alaskan 1.7%
Mixed ethnicity .8%
Unknown ethnicity 1.3%

Pedigree structure:
No. of pedigrees 428
No. of individuals genotyped 1,163
Pedigree size (mean � SD) 4.7 � 1.3
No. affected with CAD 974
No. affected with MI 712

No. of relative pairs:
Sibling/sibling 1,303
Sister/sister 258
Brother/brother 476
Brother/sister 569
Half sibling/half sibling 25

(factor V), FVII (factor VII), ACE (angiotensin-convert-
ing enzyme), AGT (angiotensinogen), endothelial nitric
oxide synthase, connexin 37, matrix metalloproteinase-
3, and other proteins have been associated in certain
populations with high risk of atherosclerosis, CAD, and
MI (Wang and Pyeritz 2000; Lewis et al. 2002; Wang
and Chen 2003). A recent large-scale genetic association
study examined 62 vascular biology genes and 85 novel
SNPs, and statistically significant association was found
between 3 SNPs in three members of the thrombospondin
(TSP) family (TSP-1, TSP-2, and TSP-4) and MI (Topol
et al. 2001). Ozaki et al. (2002) carried out a large-scale
genomewide case-control association study in a Japanese
population with 92,788 SNPs. They found that two func-
tional SNPs in the LTA gene encoding lymphotoxin-a
were associated with a high risk of MI (Ozaki et al.
2002). Another study by Yamada et al. (2002) identified
association of SNPs in connexin 37, stromelysin-1, and
PAI-1 with sporadic MI, on a sex-specific basis in a large
Japanese cohort. However, the results from these studies
will require independent replication and proof of cause
and effect.

A genomewide linkage scan is a comprehensive and
unbiased approach for identifying CAD and MI genes
(Olson et al. 1999; Wang et al. 2001). It may lead to the
identification of novel CAD and MI genes and can define
unrecognized genetic pathways for the pathophysiology
of coronary atherosclerosis and MI. In 2000, a genome-
wide linkage scan of 156 families with CAD (364 pa-

tients; average sibship size 2.3) from Finland suggested
two genetic loci for CAD, one on chromosome 2q21.1-
22 ( ) and the other on chromosome Xq23-LOD p 3.2
26 ( ) (Pajukanta et al. 2000). In 2001, usingLOD p 3.5
535 individuals from 99 families of northeastern Indian
origin, Francke et al. (2001) suggested a CAD locus on
chromosome 16p13-pter ( ; ).LOD p 3.06 P p .00017
In contrast, only one genomewide linkage scan was car-
ried out for MI. In 2002, Broeckel et al. (2002) finished
a total-genome scan of 513 families in the German data
set, and they identified a genetic locus for MI on chromo-
some 14, with a maximum LOD score of 3.9 (P p

). To our knowledge, none of these CAD/MI loci.00015
have yet been replicated, and the specific genes also
remain to be identified.

Premature CAD or MI is known to be the most ag-
gressive form of the disease, affecting men aged !45
years and women aged !50 years. In the current study,
we recruited 428 multiplex families with premature
CAD and MI (table 1), predominantly American whites,
and carried out a genomewide scan to identify novel
genetic loci for CAD and MI.

Subjects and Methods

Ascertainment of Patients and Families

The study participants have been enrolled in the United
States. Four hundred twenty-eight families with prema-
ture CAD or MI were recruited in the present study
through the Department of Cardiovascular Medicine at
the Cleveland Clinic Foundation and 10 other institu-
tions (Topol et al. 2001). The present study has been
approved by each participating center’s institutional re-
view board, and informed consent was obtained from
all participants.

Each family in the cohort has at least two affected
siblings with premature CAD, and the majority of fami-
lies also have one unaffected sibling. “Premature CAD”
was defined as any previous or current evidence of sig-
nificant atherosclerotic CAD (defined as MI, percutaneous
coronary angioplasty [PTCA], coronary artery bypass
graft [CABG], or coronary angiography with 170% ste-
nosis) occurring in males at age �45 years or in females
at age �50 years. The probands, who had to have a
living sibling meeting the same criteria, were selected
from patients undergoing coronary angiography or in-
tervention for clinically suspected CAD. Individuals with
hypercholesterolemia, insulin-dependent diabetes, child-
hood hypertension, substance abuse, and congenital heart
disease were excluded from this study.

For patients with premature CAD, the distribution of
those classified by the diagnostic criteria was 54.9% MI,
15.4% CABG, 14.9% angiography with 170% stenosis,
12.2% PTCA, and 2.6% other causes. It is important to



264 Am. J. Hum. Genet. 74:262–271, 2004

note that a large number of recruited patients with CAD
in this cohort had an MI as their initial clinical mani-
festation. The epidemiological and demographic features
of the participants in the study and the features of the
pedigrees with multiplex premature CAD are shown in
table 1. In total, 974 affected persons were recruited,
with an average age at onset of 44.4 years. The epide-
miological and demographic features of the affected in-
dividuals were similar to those of the unaffected parti-
cipants. Our cohort was predominantly male (n p

) and white (91.7% for all the participants and1,152
93.6% for those affected). Owing to the characteristic
of onset at a relatively late age in life, the majority (423
pedigrees) of the recruited multiplex pedigrees with pre-
mature CAD consist of only two generations, with an
average family size of 4.7 members (with a range of 2–
10 members; average sibship size 2.7). The data were
derived predominantly from first-degree relative pairs
(parent/offspring and sibling/sibling); extended relative
pairs (grandparent/grandchild, avuncular, and half sib-
ling) were rare in our cohort.

Clinical phenotypic evaluation of premature CAD for
probands and other participants in the study was per-
formed by a panel of cardiologists. In most cases, the
diagnosis of premature CAD had already been docu-
mented prior to recruitment in the study. The presence or
absence of premature CAD manifestations was assessed
according to a previous diagnosis of MI (on the basis of
the existence of at least two of the following: chest pain
of �30-min duration, electrocardiogram [ECG] patterns
consistent with acute MI, and significant elevation of car-
diac enzymes); history of revascularization procedures,
such as angioplasty or coronary artery bypass grafts; or
current treatment for angina pectoris. When patients who
had not previously received a diagnosis of prematureCAD
presented with clinical symptoms suggestive of ischemic
heart disease and/or ECG patterns suggestive of myocar-
dial ischemia or of old MI, they were referred to a car-
diologist who either confirmed or rejected the diagnosis.
For linkage analysis of MI, we defined the patients with-
out MI as “unaffected” if they were men aged 145 years
or women aged 150 years. Individuals without MI who
were younger than these sex-specific age cutoffs were clas-
sified as “uncertain” and were excluded from the analysis.
Three pairs of MZ twins were found in the GeneQuest
population and were also excluded from statistical
analysis.

Isolation of Human Genomic DNA and Genotyping

Genomic DNA was prepared from whole blood with
the Puregene Kits (Gentra). Genotyping was performed
by the National Heart, Lung, and Blood Institute
(NHLBI) Mammalian Genotyping Service (directed by Dr.
James L. Weber), Center for Medical Genetics, by use of

the Screening Set 11, with 408 markers that span the
entire human genome at every 10 cM (Weber and Broman
2001). DNA samples were genotyped for 1,163 well-char-
acterized participants from 428 families.

Statistical Analysis

Prior to linkage scanning, obvious pedigree errors, data
errors, genotyping errors, and locus-order errors that
commonly occur with a large-scale linkage analysis were
corrected. Allele frequencies for all the markers in the
cohort were estimated by maximum likelihood methods
using the SAGE program FREQ (SAGE 2003). Pedigree
relationships were checked using RELTEST, which em-
ploys a Markov process model of allele sharing along the
chromosome and classifies pairs of pedigree members ac-
cording to their true relationship by use of genome-scan
data (Olson 1999). Pedigree errors were found in 58 pedi-
grees, and 27 pedigrees with uncorrectable errors were
excluded from the linkage analysis. After relationships
were corrected, the SAGE program MARKERINFO was
used to detect any Mendelian inheritance inconsistencies.
Three additional pedigrees with a high incidence of in-
heritance errors were eliminated from the study. A ge-
nomewide linkage analysis was performed using allele
sharing identical by descent, as estimated by the SAGE
program GENIBD. Two covariates (sex and race) deemed
to be important for cardiovascular diseases were modeled
in this linkage analysis.

Linkage analysis of the genotyping data was performed
with two of the modified Haseman-Elston regression
models (Haseman and Elston 1972), as implemented in
the SAGE program SIBPAL, using data from 428 mul-
tiplex families with premature CAD. We took the de-
pendent variable to either the centered cross-product
(Elston et al. 2000) or a weighted combination of
squared trait difference and squared mean-corrected trait
sum (Shete et al. 2003), rather than the original squared
trait difference in the Haseman-Elston regression. We
treated the binary MI phenotype as quantitative, without
loss of generality, giving the phenotypes “affected” and
“unaffected” different quantitative scores, 2 and 1, re-
spectively. Each chromosome was analyzed separately.
A statistical test of linkage (t test) compares the estimate
of the regression parameter (b) with 0, its value under
the null hypothesis of no linkage. Three different ge-
nomewide scans (single-point linkage analysis, multi-
point linkage analysis, and multipoint analysis of white
pedigrees only) were conducted.

Asymptotic P values were converted to asymptotic
pointwise LOD scores for significant linkage regions iden-
tified by the modified Haseman-Elston regression. On the
assumption that the Haseman-Elston regression t statistic
follows a normal distribution, the P value from the Has-
eman-Elston regression analysis was converted to the cor-
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Table 2

Summary of Regions Linked to MI (Asymptotic 5log10 [P] or pP Values)

CHROMOSOME

AND MARKER LOCATION

MAP

POSITION

(cM)

LINKAGE IN

All Pedigrees
White

Pedigrees Only,
Multipoint

Product
Single-Point

Product
Multipoint

Product
Multipoint

W2a

1:
ATA47D07 1p36�3 46.6 112.00 112.00 11.70 112.00
GATA124C08 1p21�3 129.4 3.29 1.85 1.59 1.72

2:
GATA88G05 2p11�2 103.0 1.82 4.85 4.66 4.33

3:
GATA131D09 3p24.3 19.3 4.24 1.64 .89 .92

4:
4PTEL04 4p16 .0 5.30 4.19 3.10 2.55
GATA8A05 4q31�1 158.0 5.01 4.41 3.68 4.41
GGAA19H07 4q32 176.2 4.55 6.17 5.05 5.48

5:
GATA84E11 5p15�1 14.3 6.74 2.28 1.46 2.39
GATA134B03 5p14 36.0 4.57 5.35 4.74 4.77
GATA21D04 5p12 59.0 5.33 2.85 2.15 2.03
GATA52A12 5q14 85.0 4.64 2.42 3.18 2.39
GATA62A04 5q22 130.0 3.60 3.09 2.85 3.40

7:
GATA23F05 7q22 114.0 9.37 4.77 4.48 4.62

9:
SNP9558 9p21 33.1 4.28 3.68 3.59 3.96

10:
ATCC001 10p14 17.9 3.96 1.77 1.74 1.70
GATA121A08 10q21 88.0 3.82 .85 .82 .85

11:
GATA63F09 11q12 58.0 3.40 1.21 1.12 1.24
GATA30G01 11q13 85.0 1.12 4.17 4.07 4.34
GATA64D03 11q23 123.0 3.96 3.35 3.19 3.31

12:
ATA29A06 12q24�3 161.0 7.26 6.72 5.77 5.52

13:
GATA51B02 13q32 94.0 3.82 4.89 4.55 4.64

14:
ATA19H08 14q22 67.0 3.80 4.68 5.29 5.30
SNP672053 14q24.1 86.9 5.19 4.06 4.04 4.04

16:
GGAA3G05 16q11�2 58.0 4.15 1.29 1.26 1.31

20:
GATA51D03 20p12 12.0 3.54 3.20 3.00 3.18

21:
GATA70B08 21q22 57.8 3.33 2.68 2.27 2.64

a W2, weighted square trait sum and difference (W2 option [SAGE 2003]), for which weights are chosen
proportional to the inverses of the residual variances of the regression equations for the squared differences
and sums.

responding x2 statistic, with 1 df, and divided by a con-
stant (4.6) to transform to an asymptotic LOD score.

Because the t test is valid only asymptotically, permu-
tation tests were performed, as implemented in the SAGE
program SIBPAL. We performed up to 100,000 permu-
tations to obtain empirical pointwise P values. For all
nominal P values (!.05), we did sufficient permutations
to have 90% confidence that the estimated value would
be within 20% of the true value.

Results

We considered any genetic region with a �log10 P value
(pP) (Schick et al. 2003; Slager et al. 2003) 13.13
( ) as “potentially interesting,” which corre-LOD 1 2.2
sponds to suggestive linkage by the criteria of Lander and
Kruglyak (1995). Potentially interesting linkage results of
the three separate genomewide linkage scans for MI are
shown in table 2. The three separate analyses are single-
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Figure 1 Haseman-Elston sib-pair regression analysis for scanning loci segregating with MI. The vertical axis of each plot is or� log (P)
pP, where the P is the significance level from each of two analyses. The solid line indicates the multipoint linkage profile for all pedigrees; the
dashed line indicates the multipoint linkage profile for white pedigrees only. The horizontal solid line in each subfigure indicates P p 2.2 #

( ; ). The X-axis denotes marker map positions. Note that the dashed line (P values for white pedigrees only)�510 � log [P] p 4.66 LOD p 3.610

is often not visible because it frequently overlaps with the solid line (P values for all study families).

point Haseman-Elston linkage analysis with the centered
cross-product as the dependent variable, multipoint
analysis with the centered cross-product as the dependent
variable, and multipoint analysis with a weighted com-
bination of squared trait difference and squared mean-
corrected trait sum as the dependent variables (W2 op-
tion, SAGE), for which weights are chosen proportional
to the inverses of the residual variances of regressing the
squared differences and sums. Throughout the whole ge-
nome, 25 chromosomal regions generated potentially in-
teresting results in one or more linkage scans (fig. 1). No
evidence for linkage was found for any marker on chro-
mosomes 6, 8, 15, 17–19, and 22. The three linkage an-
alyses were generally in good agreement and identified
multiple chromosomal regions showing highly significant
and/or significant asymptotic P values ( ;pP p 4.66

). For the multipoint analysis with the centeredLOD 1 3.6
cross-product, the linkage regions include chromo-
somes 1p34-36 ( ; ), 2p11pP 1 12 LOD p 11.68
( ; ), 4q32 ( ;pP p 4.85 LOD p 3.82 pP p 6.17 LOD p

), 5p14 ( ; ), 7q22 (5.08 pP p 5.35 LOD p 4.32 pP p
; ), 12q24 ( ; ),4.77 LOD p 3.74 pP p 6.72 LOD p 5.62

13q32 ( ; ), and 14q24 (pP p 4.89 LOD p 3.86 pP p
; ). Six regions were replicated using W24.68 LOD p 3.64

and by single-point linkage analyses (but the highest peaks
might be on the nearby markers) (table 2). It is important
to note that the multipoint identity-by-descent analysis
revealed that the genomewide highest peak at 1p34-36
spans a 32-cM region, with P values for four markers
exceeding the significant linkage level ( ;pP p 6.52

) (fig. 2).LOD p 5.4
Three genomewide scan studies have been performed
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Figure 2 Identification of a novel genetic linkage for MI on chromosome 1p34-36. The vertical axis represents or pP, and the� log (P)10

horizontal axis denotes the distance (cM) for markers along the chromosome. The results were obtained by multipoint linkage analysis of 2-cM
intervals, through use of the SAGE package. The asymptotic P values were quoted accurately to only 12 decimal places, resulting in a flat pP
peak.

elsewhere for CAD, and suggestive susceptibility loci
were identified on chromosomes 2q21.1-22 and Xq23-
26 in a Finnish population (Pajukanta et al. 2000), on
chromosome 16p13-pter in a population with northeast-
ern Indian origin (Francke et al. 2001), and on chromo-
some 2q36-37.3 in an Australian population (Harrap et
al. 2002). However, for a less-restrictive phenotype of
CAD, no suggestive or significant linkage was identified
in the population studied here.

Population admixture is well known to be a thorny
issue in linkage analysis of complex human diseases. In
previous linkage scans, an attempt was made to remove
its interference with linkage assessment by modeling race
as a covariate in the Haseman-Elston regression. Alter-
natively, we might consider analyzing separately the data
from the different races. Since our genotyping population
is predominantly (190%) of white origin, we can perform
an analysis of white pedigrees only with marginal loss of
available sibling pairs. The linkage profiles from the ge-
nomewide scans with all pedigrees and with white pedi-
grees only are presented in figure 1. The two linkage pro-
files, as demonstrated in figure 1, are very similar, strongly
supporting the hypothesis that the linkage evidence on
multiple regions is largely from the white pedigrees. The

results for the eight chromosome regions with suggestive
or significant asymptotic P values identified using the
white pedigrees are: 1p34-36 ( ;pP 1 12 LOD p

), 2p11 ( ; ), 4q32 (11.15 pP p 4.33 LOD p 3.30 pP p
; ), 5p14 ( ; ),5.48 LOD p 4.41 pP p 4.77 LOD p 3.73

7q22 ( ; ), 12q24 ( ;pP p 4.62 LOD p 3.59 pP p 5.52
), 13q32 ( ; ), andLOD p 4.44 pP p 4.64 LOD p 3.61

14q24 ( or ) (also see table 2).pP p 5.30 LOD p 4.24
The P values described above were asymptotic P val-

ues. To estimate the significance level of the linkage re-
sults, we obtained empirical P values using a permutation
test incorporated into the SAGE program SIBPAL. The
permutation test results for all families or for white fami-
lies only are shown in figure 3. A pointwise empirical P
value of .00011 was obtained for the chromosome 1p34-
36 MI locus. To assess the significance level of a genome-
wide analysis, we evaluated the linkage results using the
criteria given by both Lander and Kruglyak (1995) and
Wiltshire et al. (2002). For a genomewide scan with
a 10-cM marker map and 15% missing genotypes,
our permutation test linkage peak on chromosome
1p34-36 corresponds to a genomewide probability of

(Wiltshire et al. 2002) for the experimentP p .030–.038
settings that match closely with ours. The empirical
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Figure 3 Evaluation of linkage results (asymptotic P value) by use of permutation tests. Up to 100,000 permutations were performed to
obtain the empirical P value at each locus by use of the SAGE program SIBPAL. The vertical axis represents or pP, and the horizontal� log (P)10

axis denotes the genetic distance (cM) for each chromosome. The solid curve indicates the empirical linkage profile for all pedigrees; the dashed
line denotes the empirical linkage profile for white pedigrees only.

pointwise P values for the other seven MI loci are .0026
for chromosome 12 locus, .01 for chromosome 4 locus,
and !.05 for chromosomes 2, 5, 7, 13, and 14 loci. Al-
though these empirical pointwise P values are all !.05,
they are too high to reach the genomewide significance
of .05. These results indicate that the strongest linkage
to MI in the population studied here is on chromosome
1p34-36. In general, the empirical permutation analysis
yielded P values of lesser statistical significance than the
asymptotic analysis, which may be attributed to the lim-
ited sample size, since the asymptotic sib-pair regression
t statistics requires a large sample size. Nevertheless, the
linkage profiles and the associated linkage peaks remain
largely unchanged (compare fig. 1 and fig. 3).

Discussion

To our knowledge, this study represents the first ge-
nomewide scan for genetic loci causing susceptibility

to premature MI in a white American population. Our
study provides strong evidence for a novel disease-sus-
ceptibility locus for MI on chromosome 1p34-36. Model-
free multipoint linkage analysis revealed a plateau of ge-
nomewide significance in a 32-cM region between mark-
ers GATA27E01 (D1S1597) and ATA79C10. The permu-
tation tests indicated an empirical pointwise P value of
.00011 (genomewide for a genomewide scanP ! .05
with a 10-cM marker map and 15% missing genotypes),
validating the identification of the significant linkage to
MI on chromosome 1p34-36.

The MI locus on 1p34-36 contains a strong candidate
gene, connexin 37 (CX37). Connexin 37 is a gap-junction
protein expressed in the arterial endothelium, including
the human coronary artery (Yeh et al. 1998, 2000). Con-
nexin 37 is required for vascular integrity, growth, re-
generation after injury, and aging of endothelial cells,
which is potentially important for the pathogenesis of
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vascular diseases, including CAD and MI (Yeh et al.
1998, 2000). The C allele of the SNP P319S (1019C/T)
was associated elsewhere with thickening of the carotid
intima in Swedish men (Boerma et al. 1999). The same
allele was also associated with CAD in a Taiwanese popu-
lation (Yeh et al. 2001). In a large case-control association
study in a Japanese population, the T allele of CX37 SNP
P319S was instead found to be associated with an in-
creased risk for MI in men (Yamada et al. 2002). The
colocalization of CX37 with the 1p34-36 MI suscep-
tibility locus, along with positive associations between
them, reported elsewhere, with CAD and MI in other
populations, implicates this gene as a candidate gene for
MI in the population we are studying (Yeh et al. 1998,
2000; Yamada et al. 2002).

Our successful identification of the chromosome 1p34-
36 MI locus might be due to the unique selection strategy
used in our study, which focused on clustering in families
with well-diagnosed premature CAD and MI, and pre-
empted common risk factors, such as hypercholestero-
lemia and insulin-dependent diabetes. Furthermore, com-
pared with other reported genomewide scans in CAD
and MI, our patient population has the youngest age at
onset, !45 years in males and !50 years in females, which
is expected to significantly increase the genetic compo-
nent involved in these diseases.

Our successful identification of a susceptibility locus
for MI may also reflect the strength of our analysis with
a more stringent phenotype. If a broader definition of
a disease like CAD—in which individuals with CAD or
with MI were all classified as “affected”—were used, it
may lead to a higher genetic heterogeneity and may gen-
erate many phenocopies. That might explain why no sin-
gle significant linkage for CAD was detected. The im-
portance of analysis with a more stringently defined phe-
notype has recently been demonstrated in a genomewide
screen for migraine, in which a locus with significant
linkage on 4q was detected when migraine with aura was
defined as “affected,” but the linkage disappeared when
a broader phenotyping—in which individuals with mi-
graine with or without aura were all classified as “af-
fected”—was used (Wessman et al. 2002). In another
genomewide scan, of 460 white families, that identified
ADAM33 to be a critical susceptibility gene for asthma,
the initial linkage with a broader phenotype of asthma
revealed only the 20p13 region to have a suggestive link-
age, but the use of a more stringent phenotype (asthma
plus bronchial hyperresponsiveness) increased the linkage
to the genomewide significance level (Van Eerdewegh et
al. 2002).

It had been anticipated that CAD and acute MI rep-
resent a continuum. However, our findings with MI, in
contrast to the much less restrictive phenotype of CAD,
are particularly noteworthy. Atherosclerotic coronary
disease is nearly endemic in the Western world, but only

a limited number of patients with this underlying con-
dition progress to having an acute MI. A recent study of
65 teenagers and young adults (average age 25 years)
who died in motor vehicle accidents demonstrated a
nearly universal presence of coronary atheroma (Berto-
meu et al. 2003). In the cohort of the present study, there
were considerably fewer individuals who sustained MI,
compared with those who had manifested coronary dis-
ease. This reflects the pivotal subgroup of patients with
the disease who have a propensity to go beyond the de-
velopment of coronary atheroma. In our high-throughput
study of this population showing the association of TSP1,
TSP2, and TSP4 SNPs with premature MI, we have noted
that the level of statistical significance for coronary dis-
ease was considerably reduced (Topol et al. 2001). Simi-
larly, the only successful high-throughput association
studies in this field to date have reported only for MI
and not for CAD (Ozaki et al. 2002; Yamada et al. 2002).
All these results together may explain why, in our large-
scale genomewide scans of 1400 families with premature
CAD and MI, no single significant linkage was detected
for CAD, whereas a significant disease-susceptibility lo-
cus for MI was detected. Our findings suggest that the
pathogenesis of CAD and MI may involve different sets
of susceptibility genes and that MI may be considered a
distinct, more restrictive phenotype.

Only one significant linkage region of 7 cM (123-130
cM on 14q, 1 LOD-unit support interval) for MI was
reported in a German population with a mean age at
onset 7 years older than that of the current cohort, with-
out exclusion for insulin-dependent diabetes mellitus or
hypercholesterolemia (Broeckel et al. 2002). This region
does not overlap with the region of 50 cM on chromo-
some 14 (58–108 cM; 95% CI) with a significant asymp-
totic P value in this study. The ethnicity, age-at-onset,
and concomitant risk-factor differences may account for
the discrepancy between the results of our study and of
the previous ones.

Although our genomewide scan revealed seven other
chromosomal regions showing significant asymptotic
multipoint P values (2p11, 4q32, 5p15, 7q22, 12q24,
13q32, and 14q24), later permutation tests generated
empirical pointwise P values that were all !.05 but that
were too high to reach a genomewide significance level
of .05. Precautions are clearly needed for interpreting
the significance levels on the basis of the asymptotic
distributions often assumed in linkage analysis, espe-
cially with the new forms of Haseman-Elston regression
testing. An advantage of using a permutation test is that
it is based solely on the data that were observed and so
serves as a stringent empirical strategy to cross-validate
the asymptotic linkage results.

In conclusion, the present study identified one novel
significant susceptibility locus for MI on 1p34-36; this
should facilitate the identification of an underlying ma-
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jor (or minor) gene for complex disease MI. Identification
of the MI gene(s) should uncover the molecular mech-
anism for the pathogenesis of MI and would ultimately
provide a basis for improving prevention and medical
management.
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